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Abstract
In cuprate superconductors doping is believed to create holes on the O-sites,
which couple antiferromagnetically with holes on the Cu-sites to form the so-
called Zhang–Rice singlets. Here we study a d-wave pairing state based on the
Zhang–Rice singlet states. Upper and lower bounds of an off-diagonal long-
range order parameter with d-wave symmetry for this state are estimated. We
also introduce a concrete model with on-site Coulomb repulsion and kinds of
antiferromagnetic interactions whose ground state is this d-wave pairing state.

PACS numbers: 74.20.−d, 74.20.Rp, 74.72.−h

1. Introduction

The mechanism of high-Tc cuprate superconductivity has been attracting much interest since
it was discovered in 1986 [1]. In cuprate superconductors, electrons (or holes) in the CuO2

planes play major roles, and the importance of the Coulomb repulsion at the Cu-sites is
emphasized from the beginning [2–4]. However, theoretical understanding of its effects on the
superconductivity is still limited and is a challenging problem in condensed matter physics.

Most theories which start with viewing cuprate superconductors as doped Mott insulators
are based on the so-called Zhang–Rice singlet states [5]. In the undoped case, where there is
one hole per Cu-site in CuO2 planes, the cuprates exhibit insulating antiferromagnetism due
to the strong Coulomb repulsion at the Cu-sites. When the system is doped, additional holes
are created on the O-sites. Because of a superexchange antiferromagnetic interaction, each
of the holes occupies a quasi-localized state on the four nearest-neighbour O-sites around a
Cu-site, forming a local spin-singlet with the hole on the central Cu-site. This singlet is now
referred to as Zhang–Rice singlet. The Zhang–Rice singlets become charge carriers moving
through the CuO2 plane and condense into a superconducting state.
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This scenario is usually examined by using the t–J model which is a single-band effective
Hamiltonian with antiferromagnetic interactions between nearest-neighbour holes on the Cu-
sites [5]. Despite its simple form, however, it is a formidably difficult task to rigorously
analyse the t–J model, and whether the model really describes the cuprate superconductivity
has not yet been clarified. In the current situation, we think that a rigorous establishment of
occurrence of a superconducting state based on the Zhang–Rice singlets in a model with the
Coulomb repulsion and antiferromagnetic interactions, even if it is apart from the t–J model,
certainly gives us an important step towards understanding of the cuprates superconductivity.

In this paper, we study a simple d-wave pairing state expanded in terms of the Zhang–
Rice singlet states. It is shown that the pairing state is regarded as a condensed state of the
Zhang–Rice singlets in the background of a resonating-valence-bond state consisting of holes
at the Cu-sites. We estimate an upper bound on an off-diagonal long-range order (ODLRO)
parameter with d-wave symmetry for the pairing state as a function of doping concentration
0 � δ � 1. It is found that an upper bound has a dome structure with a maximum at δ = 0.5
and becomes zero at δ = 0, 1. We also estimate a lower bound on the ODLRO parameter
and show that ODLRO exists for sufficiently large doping concentrations. We then introduce
a model with on-site repulsion and kinds of antiferromagnetic interactions, and show that the
pairing state is a ground state of this model. A related model with infinitely large on-site
repulsion at the Cu-site is analysed in [6]. This model, however, has following disadvantages:
the Hamiltonian does not have spin rotational symmetry, and its exact pairing ground state
has less relevance to the Zhang–Rice singlets. Although the present model has still somewhat
artificial aspects, it is for the first time that the pairing state with d-wave symmetry which is
written explicitly in terms of the Zhang–Rice singlet states is realized as a ground state of the
concrete Hamiltonian.

This paper is organized as follows. In the next section, we prepare some notation and
give a definition of the Zhang–Rice singlet states. In section 3, we introduce a two-electron
state with d-wave symmetry, and, on the basis of the Zhang–Rice singlet states, we construct
a pairing state in which many electrons condense into this two-electron state. In section 4,
we discuss an expectation value of an order parameter with d-wave symmetry for the pairing
state. An upper bound for the order parameter is obtained in this section and a lower bound,
whose estimation needs somewhat technical calculations, is obtained in section 6. In section 5,
we introduce a Hamiltonian whose ground state is the pairing state which we construct. In
the final section, a summary and some remarks are given. In the appendix, we show that the
pairing state is non-vanishing.

2. Zhang–Rice singlet states

We start with the definition of a lattice. With even integers L1 and L2, let

D = ([1, L1] × [1, L2]) ∩ Z2, (2.1)

which represents a collection of the Cu-sites. Let δ1 = (1, 0) and δ2 = (0, 1). We define

P = {u|u = x + δl/2, l = 1, 2, x ∈ D}, (2.2)

which is the collection of the mid-points of the nearest-neighbour bonds in D and corresponds
to the O-sites. Then we consider the lattice � = D ∪ P , which mimics the CuO2 plane. (See
figure 1.) For a technical reason, we impose periodic boundary conditions on �. For later
use, we introduce further the following sublattices of D:

Do = {x|x = (x1, x2) ∈ D with x1 + x2 being odd}, (2.3)

De = {x|x = (x1, x2) ∈ D with x1 + x2 being even}. (2.4)
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Figure 1. The lattice structure. The solid and open circles indicate the Cu- and O-sites, respectively.

Next we introduce fermion operators which annihilate or create holes with spin σ =↑,↓
at sites in �. Any states with the number Nh of holes can be constructed by operating these
operators on a state �0 with no holes on �. By dx,σ

(
d
†
x,σ

)
and pu,σ

(
p
†
u,σ

)
, we denote the

annihilation(creation) operators of holes at x ∈ D and u ∈ P , respectively. As mentioned in
section 1, each hole additionally induced in a CuO2 plane with 1 hole per Cu is considered
to localize well at the four nearest O-sites of a Cu-site because of the antiferromagnetic
superexchange interactions between Cu- and O-sites. To describe this localized state on the
O-sites we introduce the following operators for each x ∈ D:1

fx,σ = 1

2

∑
u∈P ;|u−x|=1/2

pu,σ . (2.5)

As is easily seen, the annihilation operator fx,σ and the creation operator f
†
x ′ defined by

(2.5) do not anticommute when |x − x ′| = 1, implying that the single-electron states
corresponding to (2.5) are not orthogonal. To avoid technical complexities arising from
this fact, we consider corresponding Wannier states. To do so, we introduce the fermion
operator f 1

σ = (1/
√

D)
∑

x∈D eiπδ1·xpx+δ1/2,σ and the reciprocal lattice

K =
{(

2π

L1
n1,

2π

L2
n2

)
|nl ∈ Z,−Ll/2 < nl � Ll/2 with l = 1, 2

}
, (2.6)

and then define f̂ k,σ = (1/
√|D|)∑x∈D fx,σ e−ik·x for k ∈ K\{(π, π)} and f̂ (π,π),σ = f 1

σ . We
normalize the f̂ -operators as âk,σ = f̂ k,σ /‖fk‖, where the normalization factors are given by

‖fk‖ =
{

1 if k = (π, π),√
1 + 1

2 (cos k1 + cos k2) otherwise.
(2.7)

The fermion operators corresponding to the Wannier states are defined by

ax,σ = 1√|D|
∑
k∈K

âk,σ eik·x. (2.8)

The a-operators defined as above approximate the f -operators well, and satisfy the canonical
fermion anticommutation relations

{
a
†
x,σ , a

†
y,τ

} = {ax,σ , ay,τ } = 0 and
{
a
†
x,σ , ay,τ

} = δσ,τ δx,y

for σ, τ =↑,↓ and x, y ∈ D. In the rest of this paper, we consider the Zhang–Rice singlets
by using the a-operators, instead of the f -operators.

1 Here | · | represents the Euclidean norm. The same symbol |X| is used to denote the number of elements in a set X.
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Figure 2. The solid and open arrows indicate spins of the holes on the Cu- and O-sites, respectively.
(a) In the case of Nh = |D|, every Cu-site is occupied by one hole. (b) When Nh is greater than
|D|, every Cu-site remains to be occupied by one hole, and additional holes are created on the
O-sites. Each hole on the O-sites occupies a quasi-localized state, which is indicated by dot lines,
and couples to the hole at the central Cu-site to form the Zhang–Rice singlet.

The Zhang–Rice singlet around a Cu-site x is formed by holes occupying a
†
x,σ and d

†
x,τ .

This singlet is represented by the two-hole creation operator

ψ †
x = d

†
x,↑a

†
x,↓ + a

†
x,↑d

†
x,↓. (2.9)

We assume that, in the case where the hole number is |D|, each hole occupies a Cu-site.
Any |D|-hole state is then expressed by a linear combination of

∏
x∈D d

†
x,σx

�0 with σx =↑,↓
(figure 2(a)). We furthermore assume that N holes added in this state form Zhang–Rice
singlets. Then a (|D| + N)-hole state with 0 < N � |D| is written by using a set of states(∏

x∈A

d†
x,σx

) ∏
y∈D\A

ψ †
y


�0, (2.10)

where A is a subset of D with |A| = |D| − N and its compliment D\A is a collection of sites
where the Zhang–Rice singlets are formed (figure 2(b)). Noting the relation

d†
x,σ �0 = −sgn[σ ]ax,−σ ψ †

x�0 (2.11)

where sgn[σ ] = + if σ =↑ and sgn[σ ] = − if σ =↓, we find that (2.10) is rewritten as(∏
x∈A

ax,−σx

)
�0 = �A,σA

, (2.12)

with

�0 =

∏

y∈D

ψ †
y


�0 (2.13)

up to a sign factor. Here σA is a short hand for a spin configuration (σx)x∈A. We write SA

for the collection of spin configurations {(σx)x∈A|σx = ↑,↓, x ∈ A}. It is easy to see that
〈�A,σA

,�B,τB
〉 = 2|D|−|A|χ [A = B]χ [σA = τB], where χ [event] = 1 if ‘event’ is true and

0 otherwise. Thus the collection of states{
�A,σA

|A ⊂ D, σA ∈ SA

}
(2.14)

is orthogonal. For |D| < Nh � 2|D|, let HNh
ZRS be the Hilbert space spanned by the basis

states {�A,σA
} with |A| = 2|D| − Nh. The Zhang–Rice singlet states are defined to be states

in HNh
ZRS.
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3. d-wave pairing state

Assuming that Nh takes an even number in |D| < Nh � 2|D|, we consider a d-wave pairing
state in the Hilbert space HNh

ZRS. Let us define a pair operator ζ by

ζ =
∑

k=(k1,k2)∈K
(cos k1 − cos k2)â−k,↓âk,↑. (3.1)

Recall that âk,σ = (1/
√|D|)∑x∈D ax,σ e−ik·x are the Fourier transforms of ax,σ . This operator

creates an electron pair with d-wave symmetry. For the hole number Nh = |D| + N with a
positive even integer N, one of the simplest d-wave pairing states in HNh

ZRS is given by

�p = (ζ )Np�0 (3.2)

with the number of pairs Np = (|D| − N)/2. Here we note that

ax,↓ax,↑�0 = 0 (3.3)

since
[
ax,↓ax,↑, ψ

†
x

] = −d
†
x,↑ax,↑−d

†
x,↓ax,↓, so that �p is actually expanded in terms of (2.12).

In the appendix, we show that �p is non-vanishing.
In order to see the real space representations of ζ and �p, we define the following

operators: for x ∈ D

bx,σ = 1

2

∑
y∈D;|x−y|=1

ay,σ eiπδ2·(x−y), (3.4)

and for x, y ∈ D

φa
{x,y} = 1

2 eiπδ2·(x−y)(ax,↓ay,↑ + ay,↓ax,↑). (3.5)

The operator φa
{x,y} corresponds to a two-electron singlet state formed by electrons on the

O-sites around Cu-sites x and y. By using these operators we can write ζ as

ζ =
∑
x∈D

ax,↓bx,↑ =
∑
x∈D

bx,↓ax,↑ (3.6)

or

ζ =
∑

{x,y}∈B
φa

{x,y}, (3.7)

where

B = {{x, y}|x, y ∈ D, |x − y| = 1} (3.8)

is the collection of bonds in D (we assume that {x, y} = {y, x}). Let C(B) be the collection
of subsets B of B such that no two elements in B share the same site. Substituting (3.7) into
(3.2), and noting the relation (3.3), we obtain

�p = Np!
∑

B∈C(B);|B|=Np

∏
{x,y}∈B

φa
{x,y}�0. (3.9)

Therefore, the pairing state �p is regarded as a nearest-neighbour resonating-valence-bond
state (which is a linear combination of products of two-electron singlets) consisting of electrons
on O-sites with the background of the fully-filled Zhang–Rice singlets.

Finally let us see the form of �p in terms of the hole creation operators. Let nd
x,σ = d

†
x,σ dx,σ

and define PD =∏x∈D

(
1−nd

x,↑nd
x,↓
)
, which is the projection operator onto the space without

double occupancies of holes at the Cu-sites. By using this projection operator we can rewrite
�0 as

�0 = 1

|D|!PD

(∑
x∈D

ψ †
x

)|D|
�0 = 1

|D|!PD

(∑
k∈K

(
d̂
†
k,↑â

†
−k,↓ + â

†
k,↑d̂

†
−k,↓
))|D|

�0, (3.10)
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where d̂k,σ = (1/
√|D|)∑x∈D dx,σ e−ik·x . Then, noting two commutation relations

â−k,↓âk,↑,


∑

p∈K

(
d̂
†
p,↑â

†
−p,↓ + â

†
p,↑d̂

†
−p,↓

)

 = −(d̂†

k,↑âk,↑ + d̂
†
−k,↓â−k,↓

)
(3.11)

and
−(d̂†

k,↑âk,↑ + d̂
†
−k,↓â−k,↓

)
,


∑

p∈K

(
d̂
†
p,↑â

†
−p,↓ + â

†
p,↑d̂

†
−p,↓

)

 = −2d̂

†
k,↑d̂

†
−k,↓, (3.12)

we obtain

�p = 1

N !
PD

(∑
k∈K

(cos k2 − cos k1)d̂
†
k,↑d̂

†
−k,↓

)Np
(∑

x∈D

ψ †
x

)N

�0

= Np!

N !
PD


 ∑

B∈C(B)B;|B|=Np

∏
{x,y}∈B

(
φd

{x,y}
)†(∑

x∈D

ψ †
x

)N

�0 (3.13)

with (
φd

{x,y}
)† = 1

2 e−iπδ1·(x−y)
(
d
†
x,↑d

†
y,↓ + d

†
y,↑d

†
x,↓
)
. (3.14)

To get the second line in (3.13) we used PDd
†
x,↑d

†
x,↓ = 0. The operator

(
φd

{x,y}
)†

corresponds
to a two-hole singlet state formed by holes at the Cu-sites. From expression (3.13) we find
that the state �p can be regarded also as a projected state in which the Zhang–Rice singlets
condense and the remaining holes at the Cu-sites are forming nearest-neighbour singlet states.

Here it should be noted that, despite the form (3.13), �p does not exhibit long-range order
associated with the Zhang–Rice singlets. In fact, it is easy to see that〈

�p, ψ
†
xψy�p

〉 = 0 (3.15)

for x �= y, since there is no charge fluctuation on the Cu-sites. It is important to consider
long-range order associated with movable holes on the O-sites, which we discuss in the next
section.

4. Order parameter

In this section, we estimate the value of a d-wave order parameter for the state (3.2). Let

� = 1

|D|
∑

{x,y}∈B
φa

{x,y} = 1

|D|ζ. (4.1)

We then define

µ�,N =
√

〈�p,�†��p〉
〈�p,�p〉 , (4.2)

µδ = lim
|D|,N→∞
N/|D|=δ

µ�,N , (4.3)

where the limit is taken with N/|D| kept fixed to δ. This order parameter measures a long
range correlation between spin-singlet pairs corresponding φa

{x,y}.
We firstly show that

〈�p,�
†��p〉 = Np + 1

2|D|2
∑
x∈D

∑
σ=↑,↓

〈
�p, a

†
x,σ ax,σ b

†
x,−σ bx,−σ �p

〉
(4.4)
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which is crucial for our estimation of µδ (recall Np = (|D| − N)/2). To see this, we observe
that

〈
(ζ )Np�0, a

†
x,↑b

†
x,↓(ζ )Np+1�0

〉 =
〈
(ζ )Npd

†
x,↓

∏
y∈D\{x}

ψ †
y�0, b

†
x,↓(ζ )Np+1�0

〉

= (Np + 1)

〈
(ζ )Npd

†
x,↓

∏
y∈D\{x}

ψ †
y�0, b

†
x,↓bx,↓(ζ )Npd

†
x,↓

∏
y∈D\{x}

ψ †
y�0

〉

= (Np + 1)
〈
(ζ )Np�0, a

†
x,↑ax,↑b

†
x,↓bx,↓(ζ )Np�0

〉
. (4.5)

To get the second line we used the commutation relation[
ζa†

x,σ , a†
x,σ ζ

] = sgn[σ ]bx,−σ , (4.6)

which immediately follows from the real space representation (3.6) of ζ . Then, by using the
spin-rotation symmetry for �p, (4.4) follows from (4.1) and (4.5).

By noting the inequality〈
�p, a

†
x,σ ax,σ b

†
x,−σ bx,−σ �p

〉 = 〈�p, a
†
x,σ ax,σ

(
1 − bx,−σ b

†
x,−σ

)
�p
〉

�
〈
�p, a

†
x,σ ax,σ �p

〉
(4.7)

and the fact that the number of a-holes (which are holes in the state corresponding to the
a-operators) is exactly N for �p, we find that µ�,N is bounded from above as

µ�,N �
√(

Np + 1

|D|
)(

N

2|D|
)

. (4.8)

The limit is thus bounded from above as

µδ � 1
2

√
δ(1 − δ). (4.9)

As for a lower bound for µδ we have the following result. Let 8
9 � δ � 1. Then we have

that

µδ � 1
2

√
γδI (δ)(1 − δ), (4.10)

where γδ = 9δ−8
2(8δ−7)

and

I (δ) = 2

(2π)2

∫
|ki |�π

εb(k)χ [εb(k) � εδ] dk (4.11)

with εb(k) = (cos k1 − cos k2)
2. Here εδ is determined by

δ = 2

(2π)2

∫
|ki |�π

χ [εb(k) � εδ] dk. (4.12)

The inequality (4.10) means that the state �p exhibits ODLRO with d-wave symmetry for
8
9 < δ < 1. The calculation for this bound is somewhat complicated and technical. We defer
the proof to section 6. It should be noted that the above lower bound is not optimal at all
and never means that there is no d-wave pairing order in a low density region of holes. It is
desirable to obtain an improved bound in the future.



10422 A Tanaka

5. Hamiltonian with ground state Φp

So far we have constructed the pairing state �p with d-wave symmetry and studied its
properties. In this section we propose a Hamiltonian H on � whose ground state is given by
�p.

Let us define the number operator na
x,σ , with σ = ↑,↓, and the spin operators Sa

x,α , with
α = 1, 2, 3, corresponding to the a-operators by

na
x,σ = a†

x,σ ax,σ , (5.1)

Sa
x,1 = 1

2

(
a
†
x,↑ax,↓ + a

†
x,↓ax,↑

)
, (5.2)

Sa
x,2 = 1

2i

(
a
†
x,↑ax,↓ − a

†
x,↓ax,↑

)
, (5.3)

Sa
x,3 = 1

2

(
a
†
x,↑ax,↑ − a

†
x,↓ax,↓

)
. (5.4)

We also define

na
x = na

x,↑ + na
x,↓. (5.5)

The number and the spin operators for the b- and the d-operators are defined similarly. By
using these operators, the Hamiltonian H is defined as follows:

H = H0 + H1 (5.6)

with

H0 = −εd

∑
x∈D

nd
x + U

∑
x∈D

nd
x,↑nd

x,↓ + J0

∑
x∈D

Sa
x · Sd

x , (5.7)

H1 = 3

4
J1

∑
x∈D

∑
σ=↑,↓

(
a†

x,σ ax,σ + b†
x,σ bx,σ

)

+ J1

∑
x∈D

(
Sa

x · Sd
x + Sb

x · Sd
x + Sa

x · Sb
x − 3

4
na

x · nb
x

)
. (5.8)

Here, all the parameters, εd, U, J0 and J1, are positive, and εd is assumed to take values in
3
4J0 < εd < 3

4J0 + U . It should be noted that one can rewrite H by using the d- and the
p-operators, although it has a somewhat complicated form. It is also noted that we do not take
any peculiar limit, such as U → ∞ and J0 → ∞, and thus H acts on a whole Hilbert space
constructed by the d- and the p-operators.

We shall show that the lowest energy of H0 for the hole number Nh = |D| + N with
0 < N � |D| is ε0 = −εd |D| − 3

4J0N , which is attained by the Zhang–Rice singlet states in

HNh
ZRS.

Let Nd
h be the eigenvalue of

∑
x∈D nd

x , the number of d-holes. Since Nd
h is a conserved

quantity for H0, it is convenient to decompose the Nh-hole Hilbert space into the subspaces
with fixed Nd

h . We denoted by HNh

Nd
h

the subspace with fixed Nd
h and by E

(
Nd

h

)
the lowest

energy of H0 for the states in HNh

Nd
h
.

Let us examine each term in H0. The eigenvalue of the first sum in H0 is −εdN
d
h for

the states in HNh

Nd
h
. The lowest eigenvalue for the second sum is zero which is attained by the

states without doubly occupied d-states. The eigenvalues of J0S
a
x · Sd

x are − 3
4J0, 0 and 1

4J0.
We have eigenvalue − 3

4J0 when each of the d-state and the a-state at site x is occupied by one
hole and furthermore the two holes in these states form the spin-singlet state.
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It immediately follows from the above observation that E(|D|) = ε0, which is attained by
the states in HNh

ZRS ⊂ HNh
|D|. In the case 0 � Nd

h < |D|, noting that there are N
p

h = |D|+N −Nd
h

holes on the O-sites, we have

E
(
Nd

h

) = −εdN
d
h − 3

4J0 min
(
Nd

h , N
p

h

)
> ε0 + 3

4J0
{
N

p

h − min
(
Nd

h , N
p

h

)}
� ε0. (5.9)

Here the second line follows from the assumptions 0 < 3
4J0 < εd and Nd

h < |D|(or N < N
p

h ),
and the third line follows from N

p

h � min
(
Nd

h , N
p

h

)
. In the case |D| < Nd

h � |D| + N , noting
that there are, at least,

(
Nd

h − |D|) doubly occupied d-states, we have

E
(
Nd

h

) = −εdN
d
h + U

(
Nd

h − |D|)− 3
4J0N

p

h

= ε0 +
(

3
4J0 + U − εd

) (
Nd

h − |D|)
> ε0. (5.10)

Here the final inequality follows from the assumptions εd < 3
4J0 + U and |D| < Nd

h . As a
result, we have E

(
Nd

h

)
> ε0 for Nd

h �= |D|, which proves the claim.
We have shown that the lowest-energy states of H0 are the Zhang–Rice singlet states in

HNh
ZRS. In the following, we shall show that H1 is positive semi-definite and �p in HNh

ZRS is its
zero energy state. This implies H = H0 + H1 � ε0 and H�p = ε0�p. We thus conclude that
�p is a ground state of H.

By a straightforward but somewhat lengthy calculation, one finds that H1 is rewritten as

H1 = 3

8
J1

∑
x∈D

2∑
m=1

4∑
l=1

[(
Km

x,l

)†
Km

x,l + Km
x,l

(
Km

x,l

)†]
(5.11)

with

K1
x,1 = b

†
x,↑ax,↓dx,↓, (5.12)

K1
x,2 = 1√

3

(
b
†
x,↑ax,↓dx,↑ + b

†
x,↑ax,↑dx,↓ − b

†
x,↓ax,↓dx,↓

)
, (5.13)

K1
x,3 = 1√

3

(
b
†
x,↑ax,↑dx,↑ − b

†
x,↓ax,↓dx,↑ − b

†
x,↓ax,↑dx,↓

)
, (5.14)

K1
x,4 = −b

†
x,↓ax,↑dx,↑, (5.15)

and

K2
x,1 = a

†
x,↑bx,↓dx,↓, (5.16)

K2
x,2 = 1√

3

(
a
†
x,↑bx,↓dx,↑ + a

†
x,↑bx,↑dx,↓ − a

†
x,↓bx,↓dx,↓

)
, (5.17)

K2
x,3 = 1√

3

(
a
†
x,↑bx,↑dx,↑ − a

†
x,↓bx,↓dx,↑ − a

†
x,↓bx,↑dx,↓

)
, (5.18)

K2
x,4 = −a

†
x,↓bx,↑dx,↑. (5.19)

It follows from this representation that H1 is positive semi-definite. Therefore, the lowest
energy of H1 is greater than or equal to zero, and any zero energy state � of H1, if it exists,
must satisfy

(
Km

x,l

)†
� = 0 and Km

x,l� = 0 for all m = 1, 2, l = 1, . . . , 4 and x ∈ D. We shall
prove that �p indeed satisfies these conditions.
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We start with the case of m = 1 and l = 1. By using the commutation relation (4.6), we
have (

K1
x,1

)†
ζ = d

†
x,↓a

†
x,↓bx,↑ζ = d

†
x,↓(bx,↑)2 + ζd

†
x,↓a

†
x,↓bx,↑ = ζ

(
K1

x,1

)†
. (5.20)

This together with
(
K1

x,1

)†
ψ

†
x = 0, which follows from

(
a
†
x,σ

)2 = (d†
x,σ

)2 = 0, leads to(
K1

x,1

)†
(ζ )Np�0 = (ζ )Np

(
K1

x,1

)†
�0 = 0. (5.21)

From ax,↓dx,↓ψ
†
x = −dx,↓a

†
x,↑d

†
x,↓ax,↓ + ax,↓d

†
x,↑a

†
x,↓dx,↓ we immediately obtain

K1
x,1(ζ )Np�0 = b

†
x,↑(ζ )Npax,↓dx,↓�0 = 0. (5.22)

We thus conclude
(
K1

x,1

)†
�p = K1

x,1�p = 0 for all x in D.
Let us consider the cases of m = 1 and l = 2, 3, 4. Define spin-lowering and raising

operators as

S− =
∑
x∈D

(
a
†
x,↓ax,↑ + d

†
x,↓dx,↑

)
, (5.23)

S+ =
∑
x∈D

(
a
†
x,↑ax,↓ + d

†
x,↑dx,↓

)
. (5.24)

From the results for l = 1 we have S+
(
K1

x,1

)†
�p = 0. It is easy to see that S+

(
K1

x,1

)† =√
3
(
K1

x,2

)†
+
(
K1

x,1

)†
S+, S+

(
K1

x,2

)† = 2
(
K1

x,3

)†
+
(
K1

x,2

)†
S+, and S+

(
K1

x,3

)† = √
3
(
K1

x,4

)†
+(

K1
x,3

)†
S+. Substituting the first relation into S+

(
K1

x,1

)†
�p = 0 and noting S+�p = 0, we find(

K1
x,2

)†
�p = 0. Repeating the same argument, we have

(
K1

x,3

)†
�p = (

K1
x,4

)†
�p = 0. By

using S−K1
x,1�p = 0, S−K1

x,1 = −√
3K1

x,2 +K1
x,1S

−, S−K1
x,2 = −2K1

x,3 +K1
x,2S

−, S−K1
x,3 =

−√
3K1

x,4 + K1
x,3S

−, and S−�p = 0, we similarly obtain K1
x,l�p = 0 for l = 2, 3, 4.

Proceeding in the same way, we obtain
(
K2

x,l

)†
� = K2

x,l� = 0 for l = 1, . . . , 4 and
x ∈ D. This completes the proof of the claim.

We remark that the uniqueness of the ground state of H for each hole number is not proved
at present. We hope that this will be clarified in a future study.

6. Estimation of a lower bound for µδ

In this section we estimate a lower bound for µδ . We will show later that〈
�p, a

†
x,σ ax,σ b

†
x,−σ bx,−σ �p

〉
〈
�p, b

†
x,−σ bx,−σ �p

〉 � γ�,N , (6.1)

with γ�,N = 9N−8|D|
2(8N−7|D|) , for N � (8|D|)/9. It follows from this inequality that

µ�,N �

√
γ�,N

Np + 1

2|D|2
∑

x,σ

〈
�p, b

†
x,σ bx,σ �p

〉
〈�p,�p〉 . (6.2)

Here, we have that∑
x∈D

∑
σ=↑,↓

〈
�p, b

†
x,σ bx,σ �p

〉 =∑
k∈K

∑
σ=↑,↓

〈
�p, εb(k)â

†
k,σ âk,σ�p

〉
, (6.3)
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and it is easy to find that the right-hand side is bounded from below by

2
N/2∑
l=1

εb(k
(l))〈�p,�p〉, (6.4)

where εb(k
(1)) � εb(k

(2)) . . . � εb(k
(|D|)) is an arrangement of εb(k) with k ∈ K in ascending

order. Substituting this lower bound into (6.2) and taking the limit, we obtain (4.10).
In what follows, we prove inequality (6.1). By the spin-rotation symmetry for �p, it

suffices to consider the case of σ = ↑. By the translation symmetry, we can also assume
x ∈ De without loss of generality . We first show that the left-hand side of (6.1) with σ = ↑
is rewritten as∑

S⊂De;x /∈S,|S|=Np
Wx(S)

2
∑

S⊂De;|S|=Np
Wx(S)

=
∑

S⊂De;x /∈S,|S|=Np
Wx(S)

2(
∑

S⊂De;x /∈S,|S|=Np
Wx(S) +

∑
S⊂De;x∈S,|S|=Np

Wx(S))
(6.5)

with the nonnegative weights

Wx(S) =
〈(∏

z∈S

φ̃z

)
�0, b

†
x,↓bx,↓

(∏
z∈S

φ̃z

)
�0

〉
, (6.6)

where φ̃z = (bz,↓az,↑ + az,↓bz,↑). To see this, note that

ζ =
∑
z∈De

bz,↓az,↑ +
∑
z∈Do

bz,↓az,↑ =
∑
z∈De

(bz,↓az,↑ + az,↓bz,↑) =
∑
z∈De

φ̃z. (6.7)

Then, since (φ̃z)
2�0 = 0 (which follows from az,↓az,↑�0 = 0), �p is expanded as

�p = Np!
∑
S⊂De

|S|=Np

(∏
z∈S

φ̃z

)
�0. (6.8)

Since ax,↑
(∏

z∈S φ̃z

)
�0 = 0 for x ∈ S (which again follows from az,↓az,↑�0 = 0), and〈(∏

z∈S ′
φ̃z

)
�0, a

†
x,↑ax,↑b

†
x,↓bx,↓

(∏
z∈S

φ̃z

)
�0

〉
= 0 for S ′ �= S, (6.9)

we have that

〈
�p, a

†
x,↑ax,↑b

†
x,↓bx,↓�p

〉 = (Np!)2
∑
S⊂De

x /∈S,|S|=Np

〈(∏
z∈S

φ̃z

)
�0, a

†
x,↑ax,↑b

†
x,↓bx,↓

(∏
z∈S

φ̃z

)
�0

〉
.

= 1

2
(Np!)2

∑
S⊂De

x /∈S,|S|=Np

Wx(S). (6.10)

To get the second line we used〈
ψ †

x�0, a
†
x,↑ax,↑ψ †

x�0
〉 = 1 = 〈ψ †

x�0, ψ
†
x�0
〉 /

2. (6.11)

Likewise, we have that〈
�p, b

†
x,↓bx,↓�p

〉 = (Np!)2
∑

S⊂De;|S|=Np

Wx(S), (6.12)

which together with (6.10) leads to (6.5).
Before proceeding, we need to introduce some notation. For each z ∈ De, define

Do,z = {y||y − z| = 1, y ∈ Do}, which is the collection of the nearest-neighbour sites of z.
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We say that z and z′ in De are connected if Do,z ∩ Do,z′ �= ∅. For S ⊂ De which does not
contain x, we call z an isolated point in S if z is not connected any other sites in S ∪ {x}, and
write Dx(S) for the collection of these isolated points in S. It is noted that, if y ∈ Dx(S

′ ∪ {y}),
the weight Wx(S

′ ∪ {y}) is reduced as

Wx(S
′ ∪ {y}) = 1

2Wx(S
′), (6.13)

since a
†
y ′,σ with |y ′ − y| � 1 commutes with b

†
x,↓bx,↓

∏
z∈S ′ φ̃z and thus〈

�0, φ̃
†
yφ̃y�0

〉 = 1

4

∑
y ′∈Do

|y ′−y|=1

∑
σ=↑,↓

〈
�0, a

†
y,σ a

†
y ′,−σ ay ′,−σ ay,σ �0

〉 = 1
2 〈�0, �0〉 . (6.14)

(Recall (6.11).) We denote by Dx(Np, l) the collection of subsets S of De such that
x /∈ S, |S| = Np and |Dx(S)| = l.

Since the value of |Dx(S)| is determined for each S ⊂ De, we have

∑
S⊂De

x /∈S,|S|=Np

Wx(S) =
Np∑
l=0

∑
S∈Dx (Np,l)

Wx(S) �
Np∑
l=1

∑
S∈Dx (Np,l)

Wx(S). (6.15)

Now fix l � 1. Noting that there are l isolated sites in S ∈ Dx(Np, l), we find∑
S∈Dx (Np,l)

Wx(S) = 1

l

∑
S∈Dx (Np,l)

∑
y∈De

Wx(S)χ [y ∈ Dx(S)]

= 1

l

∑
S∈Dx (Np,l)

∑
y∈De

∑
S ′∈Dx (Np−1,l−1)

Wx(S)χ [y ∈ Dx(S)]χ [S ′ = S\{y}]

= 1

2l

∑
S ′∈Dx (Np−1,l−1)

Wx(S
′)

∑
S∈Dx (Np,l)

∑
y∈De

χ [y ∈ Dx(S)]χ [S = S ′ ∪ {y}]

� 1

2Np

( |D|
2

− 9Np

) ∑
S ′∈Dx (Np−1,l−1)

Wx(S
′). (6.16)

To get the second line, note that removing an isolated point in S ∈ Dx(Np, l) yields an element
in Dx(Np − 1, l − 1). The third line follows from (6.13). The last inequality is obtained as
follows. Each site z in De has eight connected sites. Therefore, for every S ′ ∈ Dx(Np−1, l−1),
there exist at least |De| − 9Np sites, y, such that y is an isolated point in S ′ ∪ {y}, and S ′ ∪ {y}
becomes an element inDx(Np, l). Note that |De|−9Np is a positive number by the assumption.
Then, by using l � Np, we get the last inequality.

From (6.15) and (6.16) we get

∑
S⊂De

x /∈S,|S|=Np

Wx(S) � 1

2Np

( |D|
2

− 9Np

) Np−1∑
l=0

∑
S∈Dx (Np−1,l)

Wx(S). (6.17)

Here, for x /∈ S, we have

Wx(S ∪ {x}) =
〈(∏

z∈S

φ̃z

)
�0, a

†
x,↓ax,↓b

†
x,↑bx,↑b

†
x,↓bx,↓

(∏
z∈S

φ̃z

)
�0

〉

= 1

2

〈(∏
z∈S

φ̃z

)
�0,

(
1 − bx,↑b

†
x,↑
)
b
†
x,↓bx,↓

(∏
z∈S

φ̃z

)
�0

〉

� 1

2
Wx(S). (6.18)
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It follows from this inequality and (6.17) that

∑
S⊂De

x /∈S,|S|=Np

Wx(S) � 1

Np

( |D|
2

− 9Np

) Np−1∑
l=0

∑
S∈Dx (Np−1,l)

Wx(S ∪ {x})

=
( |D|

2Np
− 9

) ∑
S⊂De

x∈S,|S|=Np

Wx(S). (6.19)

From (6.5) and (6.19) we obtain the desired inequality (6.1).

7. Summary and remarks

In this paper, for the even numbers Nh of holes in |D| < Nh � 2|D|, we have constructed
a pairing state �p with d-wave symmetry which is expanded in terms of the Zhang–Rice
singlet states. We have calculated upper and lower bounds of the ODLRO parameter for �p

as a function of the doping concentration. We have also presented the concrete Hamiltonian
H = H0 + H1 (5.6) on the CuO2 plain which has �p as its ground state. We have proved that
the lowest energy states of H0 (5.7) are the Zhang–Rice singlet states and then have shown
that, by using the positive-semidefiniteness of H1 (5.11), the pairing state �p consisting of the
Zhang–Rice singlet states attains the ground state energy of the whole Hamiltonian H. The
uniqueness of the ground state is not proved at present, and we leave this as a problem in a
future study.

It is noted that H0 with J0 = 0 becomes the Hamiltonian of the d–p (or 3-band) model in
the atomic limit [3–5], and H0 with J0 �= 0 is essentially the same as the effective Hamiltonian
derived by taking into account the hopping terms between Cu- and O-sites as a perturbation in
the limit [5]. The idea of the Zhang–Rice singlet is based on this effective Hamiltonian, and
the t–J model is obtained by furthermore considering the motion of the Zhang–Rice singlets
perturbatively with the inclusion of the antiferromagnetic interactions between Cu-holes

H2 = J2

∑
x,y∈D;|x−y|=1

Sd
x · Sd

y, (7.1)

which is the effective interaction due to the hopping process between neighbouring Cu-sites
[5].

In the |D|-hole case, the present Hamiltonian has degenerate paramagnetic ground states
with one hole per Cu-site and does not exhibit antiferromagnetism which is essential to high-Tc

cuprates. This will be improved if we consider the modified Hamiltonian H0 + H1 + H2. This
Hamiltonian or more generally the d–p Hamiltonian with H1 may be able to reproduce the
essential features of high-Tc cuprates, such as antiferromagnetism at low doping concentrations
and charge density order (or a stripe structure) between the antiferromagnetic and the
superconducting states. We believe that further investigations about modified models based
on our Hamiltonian which is now shown to exhibit ODRLO with d-wave symmetry will
contribute the understanding of high-Tc cuprate superconductivity.
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Appendix

In this appendix, we shall show that the pairing state �p is non-vanishing when the number of
holes, Nh = |D| + N , satisfies N = |D| − 2l2L1 with some integer 0 � l2 � (L2 − 2)/2. A
similar argument will show that �p is non-vanishing for 2L1 � N � |D|.

It is easy to see that the collection of the states on the right-hand side of (6.8) is orthogonal.
So �p is non-vanishing if one of those terms is non-vanishing. We shall show that this is the
case. Let

A1 = {x = (x1, x2) | 1 � x1 � L1, 1 � x2 � 2l2, x2 is odd} (A.1)

and

A2 = {x = (x1, x2) | 1 � x1 � L1, 1 � x2 � 2l2, x2 is even}. (A.2)

Now we pick up the state in (6.8) corresponding to the subset S0 = (A1 ∪ A2) ∩ De.
Substituting φ̃z = az,↓bz,↑ + bz,↓az,↑ into this state, we obtain

∏
z∈S0

(az,↓bz,↑ + bz,↓az,↑)�0 =
∑
T ⊂S0

(∏
z∈T

az,↓bz,↑

) ∏
z∈S0\T

bz,↓az,↑


�0. (A.3)

The collection of the states on the right-hand side of the above expression is again orthogonal.
Let S1 = A1 ∩ De. Then it is easy to see that〈(∏

z∈A1

az,↓

)(∏
z∈A2

az,↑

)
�0,

(∏
z∈S1

az,↓bz,↑

) ∏
z∈S0\S1

az,↑bz,↓


�0

〉
(A.4)

is nonzero. This implies that the term in (A.3) with T = S1 (and thus the term with S = S0 in
(A.3)) is non-vanishing, which concludes that �p is non-vanishing.
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